IDENTITY OF CADINENOL WITH (±)-EPI-CUBENOL

B. TOMITA and Y. HIROSE

Faculty of Agriculture, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan

(Received 30 May 1972. Accepted 27 June 1972)

Key Word Index—Juniperus rigida; Cupressaceae; cadinenol; (±)-epi-cubenol; sesquiterpene alcohol.

Abstract—A crystalline sesquiterpene alcohol, 'cadinenol', is identified as (\pm) -epi-cubenol.

INTRODUCTION

Cadinenol, $C_{15}H_{26}O$, m.p. 75° , $[a]_D + 3\cdot7^{\circ}$, was initially isolated from *Juniperus communis* L. and named by Sorm *et al.*¹ The same compound has been isolated from *Juniperus rigida* Sieb. et Zucc. by one of the authors, from *Torreya nucifera* Sieb. et Zucc., from *Schizandra nigra* Maxim. by Hirose *et al.*, and from *Chamaecyparis formosensis* Matsum. by Toda *et al.*⁵ The identity of these isolates was confirmed by comparison of IR spectra and melting points. However, there are slight differences in specific rotation among these isolates $[a]_D \ 0^{\circ}, +3\cdot7^{\circ}, +5\cdot02^{\circ}$. Though the structure (I) for cadinenol has been proposed, the authors have found that the IR spectrum of cadinenol obtained from *Juniperus rigida* is in good agreement with that of (—)-*epi*-cubenol from cubeb oil and with that of cadinenol reported by Sorm. (—)-*epi*-Cubenol is a liquid of $[a]_D \ -95\cdot7^{\circ}$. On the other hand cadinenol has been reported to be crystalline with a poor optical rotation. This paper reports the relation between cadinenol and (—)-*epi*-cubenol.

RESULTS AND DISCUSSION

The crystalline sesquiterpene alcohol, $C_{15}H_{26}O$, m.p. 75° , $[a]_D 0^{\circ}$, isolated from *Juniperus rigida*, together with numerous sesquiterpenes⁷⁻¹⁰ including optical active cubenol (III), was identical with cadinenol by comparison of IR spectra and melting points. In NMR spectrum two secondary methyl groups, an isopropyl group and a methyl group attached to a double bond were observed, besides an olefinic proton. These NMR data were consistent with those of cadin-9-en-1-ol reported and (-)-epi-cubenol. Since the alcohol is resistant to oxidation with CrO_3 in pyridine and shows no signals in NMR corresponding to the

- ¹ J. PLIVA, M. HORÁK, V. HEROUT, F. ŠORM, Die Terpene Sammulung der Spectren und Physikalischen, Konstanten, Akademie, Berlin (1960).
- ² Y. HIROSE and T. NAKATSUKA, The 8th Symposium of Terpene, Essential Oil and Perfume Chemistry by the Chemical Society of Japan, at Sendai, in Oct., 1964, abstract paper pp. 181–184.
- ³ T. SAKAI, K. NISHIMURA, H. CHIKAMATSU and Y. HIROSE, Bull. Chem. Japan 36, 1261 (1963).
- ⁴ K. Morikawa, K. Nishimura and Y. Hirose, Nippon Kagaku Zasshi 87, 591 (1966).
- ⁵ T. Toda, Y. S. Cheng and T. Nozoe, Chem. Pharm. Bull. 15, 903 (1967).
- ⁶ Y. Ohta and Y. Hirose, Tetrahedron Letters 2073 (1967).
- ⁷ B. Tomita, M. Hayashi and Y. Hirose, Mokuzai Gakkaishi 15, 341 (1969).
- ⁸ B. Tomita, Y. Hirose and T. Nakatsuka, Mokuzai Gakkaishi 15, 48 (1969).
- ⁹ B. TOMITA and Y. HIROSE, Tetrahedron Letters 143 (1970).
- 10 B. TOMITA, T. ISONO and Y. HIROSE, Tetrahedron Letters 1371 (1970).

protons of the carbon atom attached to the hydroxyl group, the alcohol group of cadinenol is tertiary. The cadalenic skeleton^{2,5} was consistent with the spectral data and also with the following evidence.

$$(II) \qquad (III) \qquad (VIII)$$

The hydroxyl ketone (V) obtained by hydroboration of cadinenol followed by oxidation with CrO₃ in pyridine was dehydrogenated with Pd-C at 300° to yield a tetralone (VI), which was in complete agreement with 2,5-dimethyl-8-isopropyl tetralone (VI) by IR, NMR and UV spectra.¹¹ Thus the double bond in cadinenol was situated at the same position in the skeleton as in (—)-epi-cubenol (II).⁶

On dehydration with SOCl₂ in pyridine at 0° cadinenol afforded a diene (VII), which was identified by IR and NMR as one of the dienes obtained from cubenol (III) by the same dehydration. It has been reported that (—)-epi-cubenol was dehydrated under this condition to give the same diene exclusively.⁶ From these results the stereo-structure of cadinenol was deduced to be identical with (—)-epi-cubenol.

(-)-epi-Cubenol has the high optical rotation, $[a]_D$ -95·7°,6 or -100°,12 and its dehydrated derivative has also $[a]_D$ -21·9°.13 On the other hand neither our cadinenol from *Juniperus rigida* nor its dehydrated derivative displays optical rotatory power. The specific rotation of cadinenol has been reported to be $[a]_D$ 0°,2 +3·7°,1 +5·02°.5 Considering the optical rotation and spectral identities between cadinenol and (-)-epi-cubenol we conclude that cadinenol is really a mixture of (-)-epi-cubenol and its enantiomer.

Up to now (—)-epi-cubenol has been widely found in nature and (+)-epi-cubenol has been recently isolated from Streptomyces sp. B-7.¹⁴ It is very interesting that both optically active cubenol and inactive epi-cubenol have been isolated from Juniperus rigida.

EXPERIMENTAL

Isolation of cadineol and cubenol. Milled wood (air dried, 23 kg) of Juniperus rigida from Yamanashi district was extracted with MeOH. The extract (1·7 kg) was treated with n-hexane and this soluble portion (1·1 kg) was shaken with 5% NaOH to remove acidic fraction (250 g). The neutral fraction (850 g) was distilled in vacuo. The fraction of b.p. $115-130^{\circ}$ (5 mm Hg) was chromatographed on alumina using n-hexane and EtOAc (1·0, 25·1, 10·1). By preparative GLC (polyethylene glycol 6000 column) the first fraction of alcoholic portion afforded a liquid alcohol, M^+ 222, $[\alpha]_D - 24^{\circ}$, $\nu_{\text{max}}^{\text{lig}}$ 3500, 1660, 835 and 802 cm⁻¹, which was identified as cubenol. The eluate after cubenol contained four unknown compounds, one of which was

¹¹ B. A. NAGASAMPAGI, S. DEV, C. RAI and K. L. MURTHY, Tetrahedron 22, 1949 (1966).

¹² B. A. NAGASAMPAGE, L. YANKOV and S. Dev, Tetrahedron Letters 1913 (1968).

¹³ Y. Ohta, K. Ohara and Y. Hirose, Tetrahedron Letters 4181 (1968).

¹⁴ N. N. GERBER, *Phytochem.* **10**, 185 (1971).

solated by preparative GLC followed by chromatography on silica gel impregnated with silver nitrate. Its IR spectrum in CHCl₃ was in good agreement with that of cadinenol. This alcohol was recrystallized from *n*-hexane and had the following properties: m.p. 75°, [a]_D 0°, *Anal.* Found: C, 81·11; H, 11·68, Calc. for $C_{15}H_{26}O$: C, 81·02; H, 11·79%, MS M⁺ 222, $v_{max}^{CHCl_3}$ 3500, 1667 and 855 cm⁻¹, δ^{CCl_4} 0·80, 0·87 (6H, two doublets, *J* 6·7 Hz), 0·91 (3H, *d*, *J* 6·3 Hz), 1·68 (3H, *s*), 5·33 (1H, *m*).

2,5-Dimethyl-8-isopropyl tetralone. The THF solution (10 ml) of cadinenol (0·3 g) was saturated with diborane under N₂. H₂O (10 ml), 50 ml of 12% NaOH and 10 ml of 30% H₂O₂ were added. After stirring, Et₂O extraction from the solution gave ca. 300 mg oil. This oil was dried in vacuo and oxidized with CrO₃ (300 mg) and pyridine (3 ml). Usual treatment afforded crystals (ν^{Nujol}_{max} 3500, 1700 cm⁻¹), which was dehydrogenated with Pd-C at 300° for 2 hr. The Et₂O extractives contained several products, as revealed by GLC. The main component separated by preparative GLC has the following properties: MS M⁺ 216, λ^{EtOH}_{max}. 252 nm (8300), 300 nm (2180), ν^{Nujol}_{max} 1690, 1580 cm⁻¹, δ^{CCI₄} 1·20 (6H, two doublets, J 6 Hz), 1·19 (3H, d, 6·5 Hz), 2·24 (3H, s), 7·11 (2H, s).

Dehydration of cadinenol. SOCl₂ (0.5 ml) was added to the solution of cadinenol (200 mg) in pyridine (5 ml) maintained at 0°. After 30 min this was poured into H_2O and extracted with Et_2O . The ethereal solution was washed, dried and evaporated to afford a yellow oil, which was chromatographed on alumina. The eluate (100 mg) with *n*-hexane was subjected to GLC, which indicated the presence of a single predominant component. This was purified by preparative GLC and had the following properties: MS M⁺ 204, $[a]_D O^\circ$, v_{max}^{liq} 3050, 1665, 945, 885, 820, 785 cm⁻¹, $\delta^{CCl_4}O\cdot86$, 0·92 (6H, two doublets, $J\cdot6\cdot6$ Hz), 1·04 (3H, $J\cdot6\cdot6$ Hz), 1·68 (3H, $J\cdot6\cdot6$ Hz), 5·23 (1H, br $J\cdot6\cdot6$ Hz), 5·43 (1H, br $J\cdot6\cdot6$ Hz), 1·68 (3H, $J\cdot6\cdot6$ Hz), 5·41 (1H, br $J\cdot6\cdot6$ Hz), 1·68 (3H, $J\cdot6\cdot6$ Hz), 5·43 (1H, br $J\cdot6\cdot6$ Hz), 1·68 (3H, $J\cdot6\cdot6$ Hz), 1·68 (3H, $J\cdot6\cdot6$ Hz), 5·43 (1H, br $J\cdot6\cdot6$ Hz), 1·68 (3H, $J\cdot6\cdot6$ Hz), 1·68 (3H, $J\cdot6\cdot6$ Hz), 5·43 (1H, br $J\cdot6\cdot6$ Hz), 1·68 (3H, $J\cdot6\cdot6$ Hz), 1·68 (3H, $J\cdot6\cdot6$ Hz), 5·43 (1H, br $J\cdot6\cdot6$ Hz), 1·68 (3H, $J\cdot6\cdot6$ Hz)

Dehydration of cubenol. The same method mentioned above was undertaken and in this case GLC analysis showed the three products previously reported,⁶ each of which was isolated by preparative GLC. The diene of the same retention time as that from cadinenol showed the following properties: MS M⁺ 204, [a]_D -20° , $v_{\text{max}}^{\text{liq}}$ 3050, 1665, 945, 885, 820, 785 cm⁻¹, $\delta^{\text{CCI}_{4}}$ 0·86, 0·92 (6H, two doublets, J 6·6 Hz), 1·04 (3H, d, J 6·5 Hz), 1·68 (3H, s) 5·23 (1H, br s), 5·45 (1H, br s).

Acknowledgement—We are indebted to Dr. Y. Hirose, The Institute of Food Chemistry, for the IR spectra of cubenol and epi-cubenol.